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This study focuses on a biologically faithful neural network simulation, the Cog-
nitive Linguistic Adaptive Resonant Network (CLAR-NET) model of online and
real-time associations among concepts with input from everyday English. Specifi-
cally, conceptual linguistic associations are now (Loritz 1999) analyzed as dynamic
resonant patterns represented in this study in terms of neuronal activation. The
CLAR-NET model extends this line of research to various linguistic phenomena in
the realm of conceptual analysis: homonymy, polysemy, constructional polysemy
(Goldberg 1995), ambiguity, reseamblance and primary metaphor (Grady et al.
1996), neologism, contextual coreference, subject-object control, event-structure
metaphor (Lakoff 1980), negation. Investigating the representation of natural lan-
guage in biologically faithful neural networks is a prelude to a new line of research
and holds implications for language learning, neurolinguistics, metaphor theory, in-
formation retrieval, knowledge engineering, case-based reasoning, knowledge-based
machine translation systems and related ontologies.

1. Background

1.1. Why a Neural Network approach for Natural

Language?

Formal representation methods give good context-free analyses of noise-free

linguistic input by enforcing an abstraction away from the actual properties

of real-time natural language (NL). On the other hand, semantic fuzziness

and the realities of the linguistic and discourse context are systematically

ignored.

∗This work is based on research in the author’s doctoral dissertation, Georgetown Uni-
versity, Washington DC, March 2004
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Natural language is a human neurocognitive phenomenon and as such

it can be best represented in a biologically faithful neural network model.

1.2. What’s new about this Neural Network model for NL?

Most “connectionist” architectures model cerebellar cortex (e.g. Parallel

Distributed Processing, PDP). However, language learning primarily occurs

in cerebral cortex (Loritz, 1991). Grossberg’s early Adaptive Resonance

Theory (ART) describes cerebral anatomies and processes. Loritz 1999

first explained a range of phonological, morphological and syntactic NL

phenomena within the general ART framework. Koutsomitopoulou 2004

further extended the Adaptive Grammar model (AG, Loritz 1999) to a

number of critical semantic linguistic events.

Using lateral inhibition in an ANN model focusing on NL input is a rel-

atively new idea. Even when lateral-inhibition models have been proposed

for NL input (as in the PDP model), there is no provision for the general

neurobiological faithfulness of the model, which should involve both short-

term (STM) and long-term memory (LTM) in computing node activation.

Another example of a STM model for word-sense disambiguation that sug-

gests inhibition is that of Cottrell and Small 1983, and Cottrell et al 1988.

However, inhibition in these models is only recognized as a necessary part

of the disambiguation process which results in selection among particular

(often ad hoc) semantic alternatives of simple word-level NL input. Before

CLAR-NET there has been no attempt of modelling high level cognitive

linguistic tasks where lateral inhibition is a ubiquitous mechanism of a STM

and LTM system a.

2. The CLAR-NET Algorithm

(1) Map input from parser to the network.

(2) Learn input at time t.

(3) Introduce new (phasic) input to the network at time t + 1.

(4) Until stabilization, compute overall network resonance.

2.1. Adaptive Resonance Theory and Adaptive Grammar

CLAR-NET calculates both short-term memory (STM) and long-term

memory (LTM) by modeling both excitatory and inhibitory forces (cor-

aFor more detailed criticism of both PDP and Cottrell’s models please refer to the
Koutsomitopoulou 2004



October 14, 2004 11:5 Proceedings Trim Size: 9in x 6in ws-procs9x6

3

responding to neurotransmitter release). Roughly, the former facilitates

learning, whereas the helps the network classify (disambiguate) a given in-

put.Equations 1 and 2 below were introduced by Grossberg 1972 for the

calculation of SMT and LTM via excitatory and inhibitory parameters:

ẋj = −Axj + Bxizij − Cxkzkj + I (1)

żij = −Dzij + Exixj (2)

Parameter A = natural STM decay (forgetting). Parameter B = SMT

learning rate. Parameter C = inhibition rate. Parameter D = natural

LTM decay. Parameter E = LTM learning rate. zij is the change in the

weighted connection between node at site xj and its excitatory xi (Hebbian

learning). Parameter I = type of regulatory exogenous input.

3. Illustrative case: Homonymy

In this paper I briefly present the case of homonymy. For a detailed analysis

of this and a range of other linguistic phenomena please refer to Koutsomi-

topoulou 2004.

Consider the following simple natural language sentences:

(1) The bow of this ribbon has two loops.

(2) I used a new bow for shooting those arrows.

(3) Arrow is a weapon.

(4) John has a weapon.

In sentences 1 and 2, bow is homonymous. In 1, bow belongs in the

domain of ribbons, whereas in sentence 2 bow belongs in the domain of

arrows. Sentence 3 is a factoid about arrows. In psychological terms,

“factoids” are akin to “priming stimuli”. After Ss 1-3 have been learned,

S4 is presented as a “phasic input” or “probe stimulus” at time t+1. We

seek to understand how the network responds or “learns” in response to

this probe stimulus. The network diagram in figure 1 shows how Ss 1-4

are mapped into the CLAR-NET system. Notice that sentence S1 has two

nominal nodes mapped on the network: Ribbon and Bow. Sentence S2

contains Bow and Arrow. Sentence 3 (S3) is the factoid about Arrow as a

Weapon. Sentence 4 (S4) presents phasic input at time t+1.

3.1. STM results and LTM effects of the above experiment

The Bow node of S2 bearing the connotations of arrow and weapon

achieves a high activation relative to the activation value of Bow node of
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Figure 1. Bow homonymy.

S1, because Bow node of S2 and Bow node of S1 compete in an inhibitory

dipole (represented in the network diagram by the SNOT node).This means

that the reading of the homonym bow in S2 is preferred in the context of

the current network of sentences.The table below presents the xj values

after calculation of the ∆ xj in equation at (1).

Node t t + 1 tStab

bowS1
- ribbonS1

9.212 8.862 8.082
bowS2

- arrowS2
9.218 8.470 8.679

The table below shows the results for the two homonymous bow nodes

in the same experiment after the calculation of the ∆ zij in equation at (2).

In both occasions, Bow of S2 shows clear salience over bow of S1, which

suggests that the network has successfully disambiguated the homonym bow

term. However, notice that the results in the table below after calculation

of LTM show better discrimination between the two terms.
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Node t t + 1 tStab

bowS1
10.051 9.005 8.677

bowS2
8.715 9.184 9.912

Further work should investigate the pattern of rebounds and oscillations

of xj until stabilization, as well as the role of the parameters in the overall

pattern of the ∆ zij .

4. Conclusions

The CLAR-NET network models natural language semantics and meaning

as resonance. It is capable of learning to satisfactory resolve ambiguity

and perform conceptual discrimination. It plausibly and with biological

faithfulness represents both STM activation and LTM learning in a unified

fashion (i.e. within the same model), and achieves better results due to

LTM modeling. In sum, this is a promising, biologically-faithful blueprint

for natural language processing and conceptual representation.
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