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Abstract

Inference allows speakers to extract knowledge about facts that are not explicitly
existent in a document or discourse. In particular, it allows for drawing new (i.e.
previously unknown and/or not explicitly stated) conclusions about the relation-
ships of known and stated facts (topics, events, entities) of the (NL) language input.
Logical deduction and induction —and hence learning— are based on this inferential
process.

This paper sketches some aspects of a neural network algorithm pertinent to infer-
ence generation and usage. The Adaptive Resonance Theory Zero (ART0) neural
network system is not designed to model inference with explicit rules. Instead, it
represents the knowledge the reader is expected to draw from the facts stated in the
input, and based on this representation it makes inferences about certain implied
facts and their relationships. The basic hypothesis tested with this model is that
the short-term (STM) and long-term memory (LTM) systems play a crucial role in
learning, knowledge representation and by extension in inferencing. A ramification
of this hyposthesis is that a model of the short-term and long-term memory systems
is in fact a model suitable for inference.

1 Introduction

Symbolic inference is defined as the “deduction of new (i.e. previously un-
known) facts using existing facts” [1]. Question answering systems are the
most obvious usages of systems capable of performing inference. Logical de-
duction and induction —and hence learning— are based on this inferential pro-
cess. In particular, performing inference allows speakers to extract knowledge
about facts that are not existent in a document. Unlike basic extraction
systems, inference machines are capable of drawing previously unknown con-
clusions about the relationships of known and stated facts (topics, events,
entities) of the natural language (NL) input.



The ARTO neural network system is not designed to model inference with
explicit rules. Instead it represents the knowledge the reader is expected to
draw from the facts stated in the input and based on this representation it
makes inferences about certain implied facts and their relationships. The
basic hypothesis tested with this model is that the short-term (STM) and
long-term memory (LTM) systems play a crucial role in learning, knowledge
representation and by extension in inferencing.

The inferential process is guided by variable binding in the sense that
“unknown” (i.e. unidentified or ambiguous) factoids of the NL input act as
variables that they get bound to a particular stated elements of the argument
structure of the propositional input that has been previously learnt by the
system. This binding process facilitates inference, question answering and
learning. In vivo, neuronal activation patterns replace the need for variable
binding in NL introducing essentially a variable-free grammar.

This paper sketches some aspects of the ARTO system pertinent to infer-
ence generation and usage.

2 About the ARTO network

The ARTO system is a neural network simulation capable of demonstrating
how neuronal activation influences the shape of the patterns that particular
linguistic constructs form when they are uttered and understood by speakers
of a language. Two types of memory systems are maintained: STM and LTM.
The STM system simulates in vivo activation patterns of NL input at time
tx. The LTM system stores the weighted connections between nodes in the
network. Each node represents a linguistic terminal element extracted from
the parse tree that is the output of the parser applied to the original NL input
to the system.

Knowledge of different domains (”discourses”) is "encoded” in the form
of pertinent NL input. The basic premise here is that each discourse (or
domain) is defined by what speakers know about the main topic in it. There
are no a priori defined and assumed sets of facts. Of course natural discourse
is inherently elliptical and many of the necessary for inference factoids might
not be readily explicit in the chosen piece of discourse. In such cases, I assume
that these factoids have been learned at a previous time as part of the natural
development and augmentation of the network. For demonstration purposes
I model particular examples of coherent natural language discourse that each
includes a complete set of factoids that are then used to infer unknown facts,
or draw conclusions.

Another critical methodological point of the ARTO system is that no rules
apply directly. Instead, I assume that the learning and inference process
involves mapping from one domain/discourse to another. There are no ”con-
version rules” that explicitly map propositions from one domain to another.
ARTO maps the output of the parser as nodes in the network and then cal-
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culates both the node values and the weights in the connections using two
fundamental ART (Adaptive Resonance Theory, [2], [3], [4]) equations one for
the STM and the other for the LTM system respectively.

Understanding of an utterance (or piece of text) proceeds by mapping the
argument structure (i.e. information about ”who did what to whom”) of the
proposition into the network and let each terminal node in the parse-tree be-
come a node in the network. Each discourse makes a resonant network where
all nodes within a sentence excite each other and all sentence-nodes inhibit
either other. As two discourses are activated together, certain nodes act like
variables and the network needs to decide on their values i.e. binding them to
other nodes in one of the two (or more) discourses. This is also a basic case
of sense disambiguation, i.e. determining the contextually appropriate mean-
ings of an ambiguous term. Since variable binding is essential for inference
and disambiguating variables is part of binding variables to domain-specific
values, a system that addresses ambiguity efficiently is expected to fare well
on drawing inferences as well. Unlike rule-based systems, ARTO0: 1) defines its
"reasoning space” given the existent factoids that are extracted directly from
actual NL input, 2) finds implications of the extracted factoids by extracting
the argument structure of the propositions in this discourse, and mapping
them in the network, 3) defining the way the mapped factoids interact within
two minimally differing discourses by way of node connectivity patterns, 4)
reduces the derived implications to specific node activation patterns that are
generated using the ART equations for learning and memory. The heart of
the system lies in lateral inhibition (mutual inhibition between neighboring
neurons/nodes) polarized around minimal dipole anatomies ' . The inhibitory
elements are unbound variables that map into particular terminal nodes of
the parse tree as they enter the network. Previous systems taking into ac-
count inhibition in NL do not rely on the particular biologically plausible
ART equations for Hebbian learning? and memory that ARTO uses:

(2) Z” = —DZij + El‘i{L'j

In (1) the change of the value of node z; in time is being calculated based on
parameters A, B, C'and I. Parameter A is a negative parameter corresponding
to the natural decay of the z; value in time (for instance when there is no

excitation or B = 0). The parameter B is the learning rate of node z;. z;;
is the change in the weighted connection between node at site x; and its

1 Like the linguistic “minimal pairs”, minimal dipole anatomies are minimal pairs of mutu-
ally inhibitory neurons, which are crucial in the learning process as described by the ART0
algorithm.

2 “Hebbian learning” is the learning process as described by Hebb D. (1949,
The organization of behavior. New York: Wiley) that is as the physiological associa-
tion of neuron A and its neighboring neuron B when A repeatedly causes to fire B. Hebb
explained the significance of LTM in retaining the information learned in simple neuronal
structures when they are switched off.



excitatory z; (Hebbian learning). Parameter C' is the inhibition rate that the
particular z; node receives from node at site z;. And parameter I is a form of
exogenous input to the x; sub-network that works in a regulatory way in order
to prevent the network general activation from becoming too low or too high.
In (2), parameter D is the natural decay at a LTM level of z;; connection.
Parameter F is LTM learning rate and it is a function of both the node z;
and its excitatory counter-node.

3 Illustrative example

For illustration, in what follows I present a case of contextual coreference and
how it is resolved by the ARTO0 network.

3.1 Contextual Coreference

3.1.1 Statement of the problem and initial hypothesis
The following is a case of coreference hard to resolve by means of a traditional
parser. Paragraphs (A) and (B) below are successive in a coherent document:

Paragraph A: A witness in the trial of a Moroccan man charged with aiding
the Hamburg al-Qaida cell recanted statements to police that he had seen
two alleged cell members in Afghan training camps.

Paragraph B: Bekim Adeni on Wednesday threw into doubt an important
part of the case against Mounir el Motassadeq, who is charged with belong-
ing to a terrorist organization and with 3,000 counts of being an accessory
to murder in the Sept. 11 attacks.

There are two coreferring pairs of nominals in the above two paragraphs: a)
the pair witness— Bekim Adeni and b) the pair suspect—Mounir el Motassadeq.
Notice that with the absence of pronouns with known gender and number fea-
tures coreference is hard to resolve.

This type of coreference, “definite NP coreference”, differs from typical
coreference phenomena in that it does not involve a pronoun referring to the
same entity as a corresponding NP. Instead, in the above two paragraphs, two
different NPs corefer to the same entity ®. In addition, the document contains
two pairs of coreferring NPs. The problem is dual: 1) how does the reader
disambiguate this particular case of coreference? and 2) how can a biologically
inspired algorithm effectively model this process? My hypothesis is that the
network is able to learn to: 1) identify the entity to which each pair of NPs
are referring and hence 2) distinguish between the referents of the two pairs
of NPs.

3 This type of coreference is atypical not only because of the lack of overt pronouns to
anchor the coreference, but they are atypical also because the proper names involved, albeit
anaphoric, provide no explicit (feature) information about their coreference ties with the
referent common NPs.



3.1.2  FExperimental Procedure

In real-time discourse paragraphs A and B are presented successively and both

pairs of NPs are simultaneously identified and disambiguated in the discourse.

For the purposes of representation, the relevant factoids are analyzed next.
Specifically, for the identification of the witness, the following factoids are

learnt from paragraphs A and B:

(i) A witness recants statements.

(ii) Recanted statements weaken a case*

)
(iii) A case is against a suspect.
(iv) Bekim Adeni threw into doubt an important part of the case against the
suspect ®

In uttering (1) to (3) at time ¢ the network (like a reader of the document
above) learns the factoids depicted by the corresponding propositions. Sub-
sequently, when uttering (4) as phasic input® at time ¢ + 1 the network is
presented with new, or marked information about the subject of the recan-
tations. The introduction of this type of phasic input to the network at this
point of the learning process results in successfully identifying the referent of
the Proper name phrase as Bekim Aden:.

Similarly, the factoids below help the reader identify the referent of the
NP a Moroccan man:

(i) A suspect is charged with a crime.
(ii) Belonging to a terrorist organization is a crime.
(iii) A case is about a crime.

)

)
(iv) A case is against a suspect.
(v) A Moroccan man is a suspect.
)

(vi) Bekim Adeni threw into doubt an important part of the case against
Mounir el Motassadeq.

In reading phasic input S6, the reader already knowing factoids S1 to S5,
identifies the referent of the NP a Moroccan man as well as the referent of
the Proper name phrase Mounir el Motassadeq, therefore understanding the
coreference. Understanding both coreference pairs also prevents erroneous

4 This is a prelearned factoid. This kind of a priori “word knowledge” makes symbolic
learning systems hard to implement. The ARTO system learns from parsed sentences,
and disambiguation is obtained given sufficient prelearned relevant factoids mapped on the
network.

5 A more simplified prelearned factoid would be “Bekim Adeni undermined the case against
the suspect.”

6 Phasic input is input presented to the network at a later time than a pre-decided learning
period. For instance, if all sentences have been introduced and learned at time ¢ + 1, the
phasic input is introduced at the next timestep and learned after every other sentence has
already been learned. This way we can attest the effects of learning the particular input.
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readings of the otherwise vague references of NPs in paragraphs A and B.
Additionally, via the dipole between witness and suspect, the two coreference
pairs are identified and disambiguated simultaneously.

3.1.3

Findings

Network A: witnhess

Fig. 1. Network A: Coreference for the witness node

Network A consisted of the sentences below:

S1:
S2:
S3:
S4:

A witness recants statements.
Recanted statements weaken a case.
A case is against a suspect.

Bekim Adeni weakened a case.

S4 was introduced as phasic input after S1-S2-S3 had been learned. Witness
and Suspect are laterally inhibitory nodes in the network.
Network B consisted of the sentences below:

S1:
S2:
S3:
S4:
S5:

In

Bekim Adeni is a witness.

A suspect is charged with a crime.

Aiding a terrorist organization is a crime.

A Moroccan man is aiding a terrorist organization.

Bekim Adeni threw into doubt the case against Mounir el Motassadeq.
network B, S5 is phasic input and again Witness and Suspect are

mutually inhibitory nodes.

Each network learns a different set of factoids as presented by the discourse.

6



Network B: suspect

Fig. 2. Network B: Coreference for the suspect node

Network A after the introduction of the phasic input learns to distinguish
between a suspect vs. a witness, whereas Network B demonstrates how the
NP a Moroccan man is disambiguated.

The tables below show the pertinent results in terms of z; node values. In
each network, one pole of the inhibitory witness — suspect dipole is expected
to be learned. The nodes are learned in the order the corresponding sentences
are presented to the network. Each table shows the x; values for each pole
of the dipole for each network at three different timesteps during the learning
cycle: tg,, the time during which all sentences except for the phasic input
have been introduced and learned, tg, ., the timestep during which the phsaic
input has been introduced and learned, and tg;,, or stabilization time, the
timestep during which the network has completed learning the entire set of
sentences and has achieved “resonance” i.e. a state of mutual excitation and
amplification of the signal for learning.

Notice that the z; value discrepancy for the two nodes is not too significant
when paremeter B (learning rate) is .45 as in the experiment for network A.
Increasing the value of parameter B to .6 was necessary to get better value
discrepancy for the same inhibition rate (parameter C' = .6). The reason for
this required alteration in the learning rate is easily explicable by the fact
that network B consists of a larger number of sentences and hence nodes. It
is expected that the learning rate needs to be higher proportionately to the
number of nodes the network holds.



Time

Node ts, ls,sr  tStab
witnessg, | 9.218 8.470 8.679

suspects, | 9.212 8.862 8.082

Parameter | Value

A 0.15

B 0.45

C 0.6

D

E

Zij 0.5 (stable)
Table 1

Phasic input S4 in net A causes amplification of the activation of the node
Witness in S1

Time

Node ts ts,01  tStab

xr

witnesss, | 7.235 9.632  6.657
suspectg, | 7.506 9.930 7.471

Parameter | Value

A 0.15

B 0.6

C 0.6

D

E

Zij 0.5 (stable)
Table 2

Phasic input S5 in net B causes amplification of the activation of the node
Suspect in S2



Note that the above two tests only show the STM effects. When LTM
is also calculated, parameter B is overshadowed by parameter F. In similar
experiments” , the calculation of the LTM causes the network to yield results
with better discrepancy between the inhibitory nodes.

4 Findings

The findings support our initial hypothesis that discourse-level NP-coreference
phenomena are accurately represented in and adequately disambiguated by a
ARTO network.

In addition via appropriate neuronal activation patterns the ARTO algo-
rithm performs the appropriate binding of anaphoric variables and is proved
to be in the right direction as far as inferential reasoning is concerned.

5 Future Work

Further research in both the ARTO system optimisation as well as its large-
scale application testing is underway.
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