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ABSTRACT

“Fact resolution”,  “record linking”,  or “deduplication”
are familiar problems facing database management sys-
tems and data mining systems.  In general, any missing
data  in  a  record  should  be  supplied  from  another,
matching record.  Then synonyms and paraphrases, and
other equivalencies among matching records should be
normalized.  Finally all duplicate records should be re-
moved. Although numerous component  algorithms are
well-known for each of these stages, every database or
data-mining system normally requires a custom imple-
mentation of those components, an implementation fit-
ted to the particular semantic and syntactic fields of the
system’s domain.   The human mind, however, appears
able to solve this  problem by more general  processes,
with far  less domain customization.  The Fact Extrac-
tion system used in this paper is a general-purpose sys-
tem for extracting fielded data from free text.  To avoid
having to customize a linking algorithm for every appli-
cation domain, we seek a general, biologically-motivat-
ed algorithm that can adapt to the fields of any domain
to which fact extraction is applied.  We present a small,
biologically-motivated CLAR-NET prototype for such a
system applied to legal data.

1.INTRODUCTION
“Fact resolution” (or “record linking”) refers to a gener-
al  initial  data  normalization  or  data  cleaning  process
that aims to prepare large data sets for further analysis
and data mining in the legal and health (biomedical) re-
search domains.  Fact resolution techniques are needed
when: 1) The data are obtained from two or more sepa-
rate  databases,  which  do not  share  a  common unique
key (record identifier) and therefore need to be linked in
a common new database, 2) The data come in various
formats, and may be missing or contains errors, 3) The
data contain duplicate entries, which need to get de-du-
plicated  before  they  can  be  linked  to  data  in  other
databases1. 
1The problem of finding similar entities (and remove the
duplicates accordingly) is not exclusive to databases and
other “static” (offline) datasets, neither is it exclusively
referring to person names. For instance, a similar data
de-duplication  issue  is  evident  in  the  documents  re-
turned by Web search engines. 

The state-of-the-art approaches to the fact resolution
problem include probabilistic methods and deterministic
(hand-coded rule  writing)  solutions (Han  and Kamber
2000).  

Probabilistic  methods  (e.g.  Fellegi-Sunter  1969,
Yancey 2000) apply classification models to data in or-
der to detect pairs as “links”. Such models face various
issues with regard to modeling (estimation of matched-
unmatched  pairs),  and  feature  engineering  (distance
metrics,  normalization).   Contemporary  probabilistic
approaches  use maximum entropy and  other  machine
learning techniques. A disadvantage of the probabilistic
approaches is that they still largely depend on a tedious
“clerical review” process undertaken by human analysts,
and which is needed to make decisions about pairs of
records of dubious linkage status  (“possible links”  vs.
“non-links”).

Deterministic solutions test the equality of the nor-
malized  version  of the  record.  Although  this  type of
method can be very fast when it works, the main disad-
vantage of it is that valuable information is lost during
normalization.  Such systems have attempted to resolve
the  record  linkage  problem  by  defining  “acceptable
matches” (e.g.  Bell  and Sethi  2001,  Lait  and  Randell
1993). However, systems of this type are difficult to tune
and can be expensive to test. In addition, rule-based sys-
tems in an effort to exclude or prevent mismatches, tend
to build  “under-general  grammars”  including  too few
positive data. 

In this paper we adopt a neural network approach to
the fact resolution problem. The CLAR-NET model was
originally  built  for  general  neurocognitive  modeling
purposes. It utilizes and extends a theoretical framework
that is capable of generating neurocognitive predictions
to test. Unlike “connectionists” models, the CLARNET
model is biologically faithful; whereas other models aim
at emulating higher-level cognitive behavior (e.g. cogni-
tive behavior  detectable by brain  scans),  and  whereas
neuroscientific  theories  aim  at  analyzing  cognition  at
the  molecular  level,  the  CLAR-NET  network  models
natural  language  at  the  level  of  neuronal  activation.
Loritz 1999 and Koutsomitopoulou 2004 present a num-
ber of natural  language tasks where this type of ART-



based method has been applied, most prominently word
order phenomena,  as well as the tasks of co-reference,
pronoun  and  ambiguity resolution.  The  theory behind
CLAR-NET is  the generalized  theory about  cognition
and  vision  introduced by Grossberg  in  the  early 70s,
Adaptive Resonance Theory (ART), and particulalry its
application to language by Loritz 1999 and Koutsomi-
topoulou 2004. 

The biological faithfulness of CLARNET is summa-
rized  in  the  following  three  neurocognitive principles
evident in the CLARNET algorithm: 1) the temporal as-
pect of brain function (in CLARNET, “time” is modeled
via short-term and long-term memory equations), 2) the
ubiquitous feedback; i.e. not only feed-forward but, most
importantly,   backward  connections  (in  CLARNET
modeled  as  bidirectional  top-down  and  bottom-up
links),  3) the unique physical architecture of the brain
modeled  in  CLARNET  via  self-similar  hierarchical
structures  (Loritz  1999,  Koutsomitopoulou  2004,
Hawkins 2004, Mountcastle 1957). 

In this paper the focus is on the fact resolution prob-
lem and how a system emulating intelligence such as
CLARNET deals with such a problem. Above all, if the
CLARNET model  is  biologically faithful  it  should  be
capable of modeling a range of natural  language phe-
nomena, easily accommodating the particular details of
each task,  in  the  same way that  the brain  undertakes
various  intelligent  functions  and  tasks  utilizing  the
same  basic  neocortical  algorithm  (Hawkins  2004,
Mountcastle 1978). 

The primary difficulty in designing a neurocognitive
fact resolution  system is dealing with prior knowledge;
once the primary focus in the network lies on a particu-
lar  set  of  facts  (say,  fact  F1  and  fact  F2 have  fields
Charges="Paroxetene  HCL"  and  Charges="Paxil",  or
Glaxo and GSK respectively and we want the network
to identify the synonymy) all secondary ambiguities will
have to be considered "prior knowledge" (regardless of
whether the network has identified and resolved them or
not). 

Another  issue  is  dealing  with  "hapax  legomena"
facts  in  the  network.  These  facts  will  never  resonate
with anything in the network. Stopwords are such types
of "hapax legomena", since regardless of how often they
may occur in a document, they won't resonate2 with any-
thing in the network. For this reason, stop-words have
been eliminated. 

2"Resonance" is a technical term and it is well motivated
in Grossberg 1972 et seq. and Loritz 1999. Koutsomi-
topoulou  2004  defines  meaning  and  natural  language
understanding in terms of resonance. 

A third issue is providing sufficient context for the
disambiguation.  More context  is  better  as  long as  the
computational cost remains affordable. 

2.SUGGESTED APPROACH
The CLAR-NET system was originally built for another
purpose, but it provides a good starting point. In CLAR-
NET the  basic  argument  structure  (Agent,  Verb,  Pa-
tient) of a sentence is mapped onto the network in the
form of nodes extracted from an input parse tree. Fol-
lowing the parse tree structure, nodes in the network are
hierarchically  presented  into  global  Discourse  nodes,
Sentence nodes, and terminal lexical argument nodes.  

The correspondences between the general data struc-
ture  and  the  original  CLAR-NET  data  structure  are
showed below: 

Discourse Model Fact Resolution Model

Discourse Facts

Sentences Fields

Arguments Terms

  

The global Facts nodes encompass fields and terms ex-
actly like Discourse includes Sentences and argument-
nodes. Fields can hold information like plaintiff, litiga-
tor, defendant, jurisdiction, charges, etc.. Terms are the
lexical nodes, for instance “Microsoft” will be the lexi-
cal node corresponding to the defendant field in a class
action against Microsoft.  

3.THE ADAPTIVE RESONANCE MODEL
The CLAR-NET model is an adaptive resonance model
for  natural  language  processing  (Koutsomitopoulou
2004).  It  builds  on  adaptive  resonance  theory (ART,
Grossberg 1972 et seq.) basic equations for short-term
and long-term memory neuronal activation.    

3.1.1.General Hypothesis 
The general hypothesis is that this CLARNET prototype
is able to solve basic fact resolution problems by more
general processes with far less domain customization.

3.1.2.Method
Nodes are mapped onto the network following the

basic  argument  structure  of the  parse  tree  sentences. 
After all the nodes in the network have been learned, a
prime is applied. Mapped nodes interact  following the
basic  ART equations  presented in  [1]  and  [2]  below.
The network will respond to priming events of selected
mapped nodes.



The ART equations used for the calculation of neu-
ronal activation in the short-term (STM) and long-term
memory (LTM) are the following: 

d /dt xi=−Ax j∑ B  xi zij−∑C  xk zkj I
(1)

d /dt zij=−DzijExi x j     (2)

     Intuitively, equation (1) can be read as follows: The
degree of activation of a neuron  xj will naturally decay
at rate A, in the absence of any (inhibitory or excitatory)
input.  Given inputs  from a (sub)network of excitatory
neurons  xi,  its activation will increase at  rate  B.  Con-
versely, with input from inhibitory neurons xk, its activa-
tion will decrease at rate C. Grossberg characterized the
neuronal activation due to xi and xk elements “gated” (or
regulated) by the synapses or LTM traces that form from
xi  to xj (or zij) and from xk  to xj  (or zkj). In other words, if
excitation  (xi)  or  inhibition  (xk)  are  zero,  then Exixj

equals  zero  and  there  is  no  LTM  learning  at  the
synapse3. 

    Similarly, equation (2) can be read as follows: The
degree of a memory link at synapse zij from xi to xj  will
naturally decay at rate D, in the absence of input at the
synapse. On the other hand, if both  xi  and  xj  are active
(above zero and above threshold) then activation at  zij

will increase at learning rate E.

More formally, in equation (1) for the calculation of
the  Δxj (the change of neuronal activation at site  xj) or
STM activation, ART stipulates inhibition as a comple-
mentary force to that of excitation. The former is repre-
sented in the equation via parameter  -C and the latter
via parameter +B. Parameters A, B, C and I are all posi-
tive coefficients, and they are instrumental for the calcu-
lation  of the  STM activation  patterns  in  the  network.
The term -Axj  is a negative term corresponding to natu-
ral decay (forgetting) of the xj value in time. The param-
eter B is the learning rate of node at site xj. Notice that
according to the +Bxi zij term of the equation, learning is
suppressed when a) xi is near 0, i.e. when there is no ex-
citatory node xi  for a given node at site xj , b) when zij is
near  0,  i.e.  when  the  synaptic  membrane  (connection
point between xi   and  xj) is dead, or c) when  B itself is
near 0 due to various transmission faults.

Zij  is the change in the weighted connection between
node at site xj   and its excitatory xi (Hebbian learning).
Parameter C is the inhibition rate that the particular xj

3Parameter I in equation (1) is a form of exogenous in-
put to the xj sub-network that works in a regulatory way
in order to prevent the network general activation from
becoming too low or too high.

node receives from node at site xk. This parameter corre-
sponds to the off-surround inhibitory links of the cere-
bral cortex (Loritz 1999, 2002). 

In Equation (2), parameter D is the natural decay at
a LTM level of zij  connection. Parameter  E is the LTM
learning rate and it is a function of both the node xj and
its excitatory counterpart xi .

For purposes of fact resolution, we primarily present
the node values that result from the STM equation in (1)
for each of the CLAR-NET networks presented in this
study. However, scenario 2 offers the opportunity for us
to illustrate  how calculating  the LTM equation in  (2)
may yield better fact resolution4 than STM alone.

4.THE FACT RESOLUTION EXPERIMENT 

4.1.The facts 
Consider the following two facts: 

<Fact1> 
<Litigator> Elliot Spitzer</Litigator> 
accused  
<Defendant> Glaxo </Defendant>
of withholding data about 
<Charges> Paxil  </Charges>.
</Fact1>

<Fact2>
<Litigator> Meshbesher & Spence </Litigator> 

     sued 
 <Defendant> Glaxo. </Defendant>

       </Fact2>  

We have two extractions from legal data (class ac-
tions  against  GlaxoSmithKline),  fact  F1  and  fact  F2,
that are complementary, i.e. neither contains all the in-
formation but they complement each other.  For exam-
ple,  F1 contains only one litigator  Spitzer whereas F2
reveals also litigator Meshbesher & Spence in the same
case against Glaxo. 

Notice that we have ignored other potential ambigui-
ties  in  the  data.  For  instance,  “GSK”  and  “Glaxo-
smithKline” are potential aliases of the node “Glaxo” in
fact F1. For simplicity, we have assumed that “Glaxo” is
the only form of this company name presented in the da-
4For details on the effects of LTM calculation in CLAR-
NET networks the reader is referred to the author's doc-
toral  dissertation:  Koutsomitopoulou E. (2004).  A neu-
ral network model for the representation of natural lan-
guage. PhD thesis, Georgetown University, Washington
DC. Ann Arbor: UMI. 65:6, 3137058.



ta. The aim of this network is to show how elliptical but
semi-complementary facts are resolved without having
to worry about specific cases of proper-name ambiguity,
although this type of network could also tackle this is-
sue. 

In  the scenaria  presented below, we prime one or
two high-value topic-gradient  nodes and then have all
the other nodes in the Litigator and Defendant dipoles
compete with each other in order to activate the most-
resonant  between them.  Two different  scenaria  of in-
creasing complexity illustrate what the CLAR-NET al-
gorithm  can  do  with  incomplete  but  complementary
facts.  

4.2.Scenario 1: Fact F1 is missing a Defendant node. 
In scenario 1, our hypothesis is that, given fact F1 with
a missing  Defendant  node, if we prime a node of fact
F1, the Defendant  node of fact F2 (Glaxo) will become
activated and the missing element of F1 will be provid-
ed by the complementary fact F2. In this experiment, we
prime node Charges of F1 to this effect. 

Specifically, the facts presented in  4.1 are  now as
follows:

<Fact1>
<Litigator> Elliot Spitzer</Litigator> 
sued over
<Charges> Paxil </Charges>
</Fact1>

<Fact2> 
<Litigator> Meshbesher & Spence  </Litigator> 
sued 
<Defendant> Glaxo </Defendant>
over  
<Charges> Paxil </Charges>.

      </Fact2>

The network for scenario 1 is depicted in Figure 1.  

 Figure 1. Scenario 1 network: missing defendant

As  showed in  Figure  1,  at  Facts  level  the  nodes
mapped  are  F1  and  F2.  At  Fields  level,  the  nodes
mapped are Lit1, Lit2, Charges1, Charges2, and Defen-
dant2. Fact F1 is missing its Defendant node. At termi-
nal-node level, the nodes mapped are: Spitzer (which is
the  Litigator  for  F1),  M&S  (Meshbesher  &  Spence,
which is the Litigator for F2), Paxil (the Charges node
for both facts) and Glaxo (the Defendant of F2). Notice
that node Paxil belongs to both Charges1 and Charges2.

The connections among the nodes mapped are either
excitatory  or  inhibitory.  Specifically,   corresponding
nodes between levels are mutually excitatory.  For ex-
ample,  F1  excitates  and  is  excitated  by  Lit1  and
Charges1,  F2  excitates  and  is  excitated  by Lit2  and
Charges2,  and so on.  The same happens at  the  terms
level.  For  example,  Lit1  excitates  and  is  excitated  by
Spitzer, Charges1 excitates and is excitated by Paxil and
so on. 

On the other hand, nodes mapped at the same level
are antagonistic and the competition  is marked by in-
hibitory dipoles. This means that nodes at the facts lev-
el, F1 and F2, are mutually inhibitory and so are nodes
mapped at the fields level. At the fields level of this sce-
nario  we have  two antagonistic  dipoles,  one  between
Litigators and one between Charges.

The  network  runs  with  nodes  F1,  F2,  Lit1,
Charges1,  Lit2,  Charges2,  Defendant2,  Spitzer,  M&S,
Paxil,  and Glaxo mapped and learned first. The phasic
input  node  Probe is  introduced  to  the  network  at  a
timestep  t+1 after the above nodes are all learned, and
is linked to the previously learned node Charges1 of F1.

4.2.1.Scenario 1 Results
Table 1 shows the  xj values for nodes  F1, F2, Glaxo,
Probe and Defendant2 before and after the presentation
of  the  phasic  input  in  Scenario  1,  until  stabilization
point. 

Node F1 F2 Glaxo Probe

T/S 

t/s 4 7.79 7.27 10.55

t/s 5 8.22 7.66 9.09 0.5

t/s 6 7.65 7.74 10.14 1.37

Stab 8.01 8.32 9.76 1.15

 Table  1.  Scenario  1  network  results:  Table  1.
presents the values for nodes F1, F2, Glaxo and Probe in
four  successive timesteps,  t/s  4,  t/s  5,  t/s  6,  and  Stab
(stabilization point), where t/s 5 is the timestep at which
the network was presented with the phasic input (start-



ing at  0.5.  Notice the boldface node value at  timestep
Stab for node Glaxo; this is the most prominently acti-
vated node value in this network at Stab point. 

Node Defendant2

T/S

t/s 4 2.26

t/s 5 5.01

t/s 6 4.28

Stab 4.72

Table 1. Scenario 1 network results (cont.): Table
1. (cont.) presents the values for node Defendant2 in the
same timesteps. 

Phasic  input  Probe  is  presented to the  network at
timestep  t/s  5.  At  timestep  t/s  6  (and  at  stabilization
point)  Glaxo  is activated beyond threshold (notice the
boldface node value in timestep Stab for node Glaxo).
Glaxo is the Defendant of fact F2 that complements the
missing Defendant of fact F1 in this scenario. 

4.2.2.Scenario 1 Findings
Fact F1 is missing a Defendant node. When we probe a
node of an incomplete fact F1, the Defendant node of a
synonymoys and complementary fact F2 is then activat-
ed to highlight the missing argument and complete the
fact. 

Similarly to scenario 1, another  scenario could in-
vestigate the case of a missing Litigator node with the
expectation that if we prime any node in the incomplete
fact, the Litigator node of the complementary fact will
become activated to complete the fact. 

In the next scenario, we investigate a slightly more
complex case where one of the litigator nodes in three
almost identical facts is wrong. In legal data, we often
have cases of class actions with “wrong” litigators in le-
gal data. For instance, legal data often are not reliably
linked  due to cases of proper  name  co-reference,  etc.
Additionally, in fact extraction in general multiple facts
about a particular company litigation are extracted from
different sources by many different extraction rules, and
we may then want the “majority” vote. 

4.3.Scenario 2: Fact F1 is identical to fact F2 and to
fact F3, but F3 has a wrong Litigator. 

In scenario 2, our hypothesis is that, given almost in-
dentical facts fact F1, fact F2 and fact F3, if we prime
any node of any fact, the Litigator node of fact F3 will
become deactivated and the “majority vote” of the other

two facts  will  prevail.  In  this  experiment,  we  prime
node Glaxo of F2 to this effect. 

Specifically, the facts in this scenario are as follows:

<Fact1>
<Litigator> Spitzer</Litigator> 
sued 
<Defendant> Glaxo </Defendant>
over
<Charges> Paxil </Charges>
</Fact1>

<Fact2> 
<Litigator> Spitzer  </Litigator> 
sued 
<Defendant> Glaxo </Defendant>
over  
<Charges> Paxil </Charges>.

      </Fact2>

<Fact3> 
<Litigator> Jones </Litigator> 
sued 
<Defendant> Glaxo </Defendant>
over  
<Charges> Paxil </Charges>.

      </Fact3>

The network for scenario 2 is depicted in Figure 2. 

Figure 2. Scenario 2 network: Fact3 is incorrect

As  showed in  Figure  2,  at  Facts  level  the  nodes
mapped are  F1,  F2 and F3. At  Fields level, the nodes
mapped  are  Lit1,  Lit2,  Lit3,  Charges1,  Charges2,
Charges3  and  Defendant1,  Defendant2,  Defendant3.
Fact F1 and fact F2 have identical Litigator, Defendant
and Charges nodes. At  terminal-node level,  the nodes
mapped are: Spitzer (which is the Litigator for F1 and
F2),  Jones  (the  Litigator  for  F3),  Paxil  (the  Charges



node for fact F1, F2 and F3) and Glaxo (the Defendant
of F1, F2 and F3). 

Like in Scenario 1, the connections among the nodes
mapped are either excitatory or inhibitory. Correspond-
ing  nodes between levels are  mutually excitatory.  For
example, F1 excitates and is excitated by Lit1, Defen-
dant1  and  Charges1,  F2 excitates  and  is  excitated  by
Lit2,  Defendant2  and Charges2,  and so on.  The same
happens at the  terms level. For example, Lit1 excitates
and  is  excitated by Spitzer,  Charges3 excitates and is
excitated by Paxil and so on. 

On  the  other  hand,  all  homonymous  nodes  at  the
same level form antagonistic dipoles with nodes mutu-
tally excitatory. In scenario 2, there are 12 antagonistic
dipoles: three at the facts level; one between F1 and F2,
one between F1 and F3 and one between F2 and F3, and
three dipoles for each of the 3 fields; three for the Liti-
gators nodes, three for the Defendant  nodes and three
for the Charges nodes.

The network runs with nodes F1, F2, F3, Lit1 Lit2,
Lit3,  Charges1, Charges2, Charges3, Defendant1, De-
fendant2, Defendatn3, Spitzer, Jones, Paxil,  and Glaxo
mapped and learned first. As in scenario 1, the phasic
input  node  Probe is  introduced  to  the  network  at  a
timestep  t+1 after the above nodes are all learned, and
is linked to the previously learned node Glaxo.  

4.3.1.Scenario 2 Results
Table 2 shows the  xj values for nodes  F1, F2, F3,

Probe, Jones  and  Spitzer before and after the presenta-
tion of the phasic input  according to Scenario 2, until
stabilization point.

Node F1 F2 F3 Probe

T/S 

t/s 4

t/s 5 6.93 6.93 5.99 0.5

t/s 6 10.68 10.68 9.26 1.74

Stab 3.95 3.95 2.08 2.26

Table  2.  Scenario  2  network  results:  Table  2.
presents the values for nodes F1, F2, F3 and Probe in
four  successive timesteps,  t/s  4,  t/s  5,  t/s  6,  and  Stab
(stabilization point), where t/s 5 is the timestep at which
the network was presented with the phasic input (start-
ing at 0.5)

Node Jones Spitzer

T/S

t/s 4 2.03 5.36

t/s 5 2.57 6.21

t/s 6 2.02 5.47

Stab 2.14 5.94

Table 2. Scenario 2 network results (cont.): Table 2.
presents the values for nodes Jones and Spitzer in  the
same  timesteps.  Notice  the  boldface  node  value  at
timestep Stab for node Spitzer; this is the most promi-
nently  activated  node  value  in  this  network  at  Stab
point. 

Phasic  input  Probe  is  presented  to the  network at
timestep t/s 5. At timestep t/s 6 Jones falls below thresh-
old, whereas  Spitzer is -by comparison- highly activat-
ed. Jones is the wrong Litigagor of fact F3. 

4.3.2.Scenario 2 Findings
Fact F3 has a wrong Litigator node. When we probe a
node in the network of Scenario 2, the correct Litigator
node of the other two facts F1 and F2 is then activated,
whereas the erroneous one is deactivated.  

4.3.3.LTM results
The  results  in  Table  2  are  satisfactory.  However,

Spitzer, even though is highly activated  in comparison
to Jones at stabilization point, is still slightly below its
own  threshold.   One  may  wonder  if  LTM  learning
would help  elucidate  the  process and  perhaps  yield a
sharper  resolution  of  the  Spitzer-Jones  antagonistic
dipole. 

Indeed, running the network of Scenario 2 again in
order to achieve LTM learning following the equation
in (2) in section 3 of this paper, yielded the following
results.

Node F1 F2 F3 Probe

T/S 

t/s 4 2.29 2.29 2.47

t/s 5 2.1 2.1 1.85 0.5

t/s 6 2.11 2.11 1.96 10.02

Stab 2.15 2.15 2.06 8.94

 Table 3. Scenario 2 network LTM results: Table 3.
presents the LTM values for nodes F1, F2, F3 and Probe



in four successive timesteps, t/s 4, t/s 5, t/s 6, and Stab
(stabilization point), where t/s 5 is the timestep at which
the network was presented with the phasic input (start-
ing at 0.5)

Node Jones Spitzer

T/S

t/s 4 10.85 9.38

t/s 5 9.67 10.12

t/s 6 9.51 10.81

Stab 9.54 10.56

Table 3. Scenario 2 network LTM results (cont.):
Table 3. presents the values for nodes Jones and Spitzer
in the same timesteps. Notice the boldface node value at
timestep Stab for node Spitzer; this is the most promi-
nently  activated  node  value  in  this  network  at  Stab
point. 

Phasic  input  Probe  is  presented to the  network at
timestep t/s 5. At timestep t/s 6 Jones falls below thresh-
old, whereas  Spitzer remains above threshold and is ac-
tivated at a node value higher than  Jones.  Finally, the
network stabilizes with  Spitzer  clearly prevailing  over
Jones. Jones is the wrong Litigagor of fact F3. 

5.CONCLUSION AND FUTURE WORK
The CLAR-NET system for fact resolution offers a sim-
ple, yet generizable and biologically-motivated approach
to the problem of integrating  information from two or
more  extracted facts,  which  may have been  extracted
from different sources. In addition, by directly providing
natural language data we are able to intuitively evaluate
the CLARNET results confirming the readers' expecta-
tions about the output.  Capitalizing on the capacity of
the human mind to solve this problem by more general
processes and far less domain customization, the CLAR-
NET model presented here is the first step towards an
adaptable system for fact resolution across applications.

Future work would extend the CLAR-NET prototype
to resolve not only entities but also concepts in the legal
and other domains. In addition, instead of the selected
“training” cases presented above, future work would in-
clude random data extracted from sources, aiming at the
optimization of the algorithm in real-time conditions. 

6.REFERENCES
 

[1] A.J.  Lait,  and  B.  Randell,  “An  Assessment  of  Name
Matching Algorithms”, Technical Report, Department of

Computing Science, University of Newcastle upon Tyne,
UK 1993.

[2] D. Loritz, How the Brain Evolved Language. Oxford Uni-
versity Press, 1999, 2002.

[3] E.  Koutsomitopoulou,  A neural  network  model  for  the
representation of natural language.  PhD thesis, George-
town University, Washington DC. Ann Arbor: UMI. 65:6,
3137058, 2004.

[4] G. B. Bell and A. Sethi, “Matching Records in a National
Medical  Patient  Index”,  Communications  of the  ACM,
Vol. 44 No. 9, September 2001.

[5] I.  P.  Fellegi  and  A.  B.  Sunter,  “A Theory for  Record
Linkage”,  Journal  of the  American  Statistical  Associa-
tion, vol. 64, pp. 1183-1210, 1969.

[6] J.  Han  and  M.  Kamber,  Data  Mining:  Concepts  and
Techniques, Morgan Kaufmann, 2000.

[7] J.  Hawkins,  On Intelligence. Times  Books,  New York,
2004.

[8] S. Grossberg, “A neural theory of punishment and avoid-
ance.  i:  qualitative  theory.”  Mathematical  Biosciences,
vol. 15, pp. 39-67, 1972a.

[9] S. Grossberg, “A neural theory of punishment and avoid-
ance.  i:  qualitative  theory.”  Mathematical  Biosciences,
vol. 15, pp. 39-67, 1972a.

[10] V.  Mountcastle,  “An  organizing  principle  for  cerebral
function: The unit model and the distributed system.” in
G. M. Edelman and V. B. Mountcastle, eds., The mindful
Brain. Cambridge, Mass: MIT Press, 1978.

[11] V. Mountcastle, “Modality and topographic properties of
single neurons of cat's somatic sensory  cortex.” Journal
of Neurophysiology, vol. 20, pp. 408-34, 1957.

[12] W. E. Yancey, “Frequency-Dependent  Probability Mea-
sures  for  Record  Linkage”,  Research  Report  RR00/07,
Statistical Research Division, US Bureau of the Census,
July 2000.


